高速光纤传输系统不可或缺的材料
世界杯场地 8528 2025-06-20 08:47:30

铒在地壳中的丰度为3.8ppm,仅相当于钕的1/10,本着“物以稀为贵”的原则,也应算作稀土中的“贵族”。

目前铒最突出的用途是制造掺铒光纤放大器(Erbium Dopant Fiber Amplifier,简称EDFA)。

掺铒光纤放大器

EDFA(ErbiurDoped Fiber Amplifer)是光纤放大器中具有代表性的一种。由于EDFA工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。由于这两个能级之间的能量差正好等于1550nm光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。已商用的EDFA噪声低,增益曲线好,放大器带宽大,与波分复用(WDM)系统兼容,泵浦效率高,工作性能稳定,技术成熟,在现代长途高速光通信系统中备受青睐。目前,"掺铒光纤放大器(EDFA)+密集波分复用(DWDM)+非零色散光纤(NZDSF)+光子集成(PIC)"正成为国际上长途高速光纤通信线路的主要技术方向。

铒的另一个应用热点是激光,尤其是用作医用激光材料。铒激光是一种波长为2.94μm的固体脉冲激光,其波长恰好位于水的最高吸收峰值。因此,这种固体铒激光从理论上能非常理想地引起浅层皮肤的快速升温,在热损伤最小的情况下,精确的汽化分离组织和碎片排出。热损伤被限定在30-50μm范围内。利用铒激光进行皮肤永久补水嫩肤研究有着巨大呈现,特别是在固体激光和中红外线激光上的制造。因此铒激光是唯一可以用于皮肤治疗方面的激光。

铒激光

另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大 气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。

稀土铥

铥是以其的氧化物的形式在1879年被第一次提取,由Per Teodor Cleve在瑞典的乌普萨拉大学实现。在1843年,铒和铽从钇中提取,之后,在1874年,Cleve更加仔细的观察铒并意识到它肯定还包含其它元素,因为他发现其原子重量会根据它的来源而轻微变化。他在1879年从中提取出了铥。在1911年,美国化学家Theodore William Richards完成了15,000次溴酸铥的再结晶,为了获取这个元素绝对纯净的样本,以来决定它准确的原子质量。

目前铥最突出的用途是制造掺铥光纤激光器。它输出的激光波长位于2pm波长左右,水分子有很强的中红外吸收峰在该波长的范围附近,因此它被认为是应用于医学、眼睛安全、超快光学、近距离遥感、生物学的比较理想的光源,具有很好的发展前景。同时在医学的领域方面,掺铥光纤激光器也有很多方面的应用,包括加速汽化、超精细的切割工艺、以及在医学中的凝结止血。除此之外,大功率的掺铉光纤激光器除了可以用于人眼的安全波长和激光雷达光源以外,还能够当做固态晶体激光器的泵浦源来使用,进一步来实现波长更长红外激光器的输出。在今年的《中国制造2025》里面,我国的光纤里头掺铥元素激光器达到了国际水平。

铥的另外一个主要应用在医学领域。铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。

稀土镱

1878年,瑞士化学家查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在“铒”中发现了一种新的稀土元素,为了纪念钇矿石发现地——斯德哥尔摩附近那个名叫伊特比(Yteerby)的小村,把这个新元素命 名为Ytterbium,元素符号为Yb,汉译名称为“镱”—是该元素的专用汉字。

镱在镧系元素中虽然排在铥之后,但其地壳丰度达却到3.3ppm,不但高于铽钬铥镥等其它中重 稀土,甚至高于铕(2.2 ppm)。镱作为重稀土元素,由于可利用的资源有限,产品价格昂贵,限制了其用途研究。随着光纤通讯和激光等高新技术的出现,镱才逐渐找到大显身手的应用舞台。

随着“信息高速公路”的建设发展,计算机网络和长距离光纤传输系统对光通讯用的光纤材料性能要求越来越高。镱离子由于拥有优异的光谱特性,可以像铒和铥一样,被用作光通讯的光纤放大材料。尽管稀土元素铒至今仍是制备光纤放大器的主角,但传统的掺铒石英光纤增益带宽较小(30nm),已难以满足高速大容量信息传输的要求。而Yb3+离子在980nm附近具有远大于Er3+离子的吸收截面,通过 Yb3+的敏化作用和铒、镱的能量传递,可使1530nm光得到大大加强,从而大大提高光的放大效率。近年来,铒镱共掺的磷酸盐玻璃受到越来越多研究者的青睐。高功率掺镱双包层光纤激光是近年国际上固体激光技术中的一个热点领域。它具有光束质量好、结构紧凑、转换效率高等优点,在工业加工等领域中有广泛的应用前景。双包层掺镱光纤适合于半导体激光器泵浦,具有耦合效率高和激光输出功率高等特点,是掺镱光 纤的主要发展方向。目前我国的双包层掺镱光纤技术与国外先进水平已不相上下。我国研制的掺镱光纤、双包层掺镱光纤以及铒镱共掺光纤在性能和可靠性方面均已达到国外同类产品先进水平,具有成本优势,并拥有多项产品和方法的核心专利技术。

掺镱双包层光纤激光

镱的光谱特性还被用作优质激光材料,既被用作激光晶体,也被用作激光玻璃。掺镱激光晶体作为高功率激光材料已形成一个庞大的系列,包括有掺镱钇铝石榴石(Yb:YAG)、掺镱钆镓石榴石(Yb:GGG)、掺镱氟磷酸钙(Yb:FAP)、掺镱氟磷酸锶(Yb:S-FAP)、掺镱钒酸钇(Yb:YV04)、掺镱硼酸盐和硅酸盐等。

半导体激光器(LD)是固体激光器的一种新型泵浦源。Yb:YAG具有许多特点适合高功率LD 泵浦,已成为大功率LD泵浦用激光材料。Yb:S-FAP晶体将来有可能用作实现激光核聚变的激光材料,引起人们的关注。在可调谐激光晶体中,有掺铬镱钬钇铝镓石榴石(Cr,Yb,Ho:YAGG),其波长在2.84~3.05μm之间连续可调。据统计,世界上用的导弹红外寻弹头大部分是采用3-5μm的中波红外探测器,因此研制Cr,Yb,Ho:YSGG激光器,可对中红外制导武器对抗提供有效干扰,具有重要的军事意义。

目前我国在掺镱激光晶体(Yb:YAG、Yb:FAP、Yb:SFAP等)方面,已取得一系列 具有国际先进水平的创新性成果,解决了晶体的生长以及激光快速、脉冲、连续、可调节输出等多项关键技术,研究成果已在国防、工业和科学工程等方面获得实际应用,掺镱晶体产品已出口美国、日本等多个国家与地区。

镱激光材料的另一个大类是激光玻璃。已开发出锗碲酸盐、硅铌酸盐、硼酸盐和磷酸盐等多种高发射截面的激光玻璃。由于玻璃易成型可以制成大尺寸,并具有高光透和高均匀性等特点,可制成大功率激光器。通过调节玻璃成分,可以提高镱激光玻璃的诸多发光性能。以发展高功率激光器为主要方向,用镱激光玻璃制造的激光器越来越广泛地应用于现代工业、农业、医学、科学研究和军事方面。

将核聚变产生的能量作为能源一直是人们期待的目标,实现受控核聚变将是人类解决能源问题的重要手段。掺镱激光玻璃以其优异的激光性能正在成为21世纪实现惯性约束核聚变(ICF)升级换代首选材料。激光武器是利用激光束的巨大能量,对目标进行打击破坏,可以产生上亿度的高温,以光的速度直接攻击,可以指那打那,具有极大的杀伤力,尤其适用于现代战争的防空武器系统。掺镱激光玻璃的优异性能已使它成为制造高功率和高性能激光武器的重要基础材料。

激光武器

此外,镱也对世界钟表的精度做出了重要贡献。美国国家标准与技术研究所研究人员在2016年表示,他们成功研制出迄今最精确的原子钟。如果它从宇宙诞生之初就开始"滴答"走动,到今天也不会发生1秒的误差。最新测算数据显示宇宙的年龄为138亿年。据研究人员在《科学》杂志上发表的报告,这一原子钟用镱元素制成,首先将约1万个镱原子冷却至10微开尔文,即在绝对零度以上百万分之十摄氏度,然后将其封闭到由激光制成的被称为光晶格的"容器"中,另一个每秒"滴答"518万亿次的光晶格则将引发这些原子在两个能量级之间"摆动",最终制成了迄今最稳定的原子钟。镱原子钟的精度达10的18次方,比此前最精确的原子钟提高约10倍。这种原子钟有望在要求有稳定时间信号的领域派上用场,包括互联网、金融系统和导航定位系统等。

镱原子钟

写到稀土元素的后面几个重稀土元素,虽然它们的含量不高,熟知度也不高。但是其在通信领域和军事领域的作用是不可替代的。

本文为材料+编辑整理,转载请联系【材料+】微信:cailiaojiaplus,或者发送邮件到:matplus@qq.com返回搜狐,查看更多

Copyright © 2022 98世界杯_乌拉圭世界杯 - cy078.com All Rights Reserved.